China supplier Ola Mechanical Machinery Suppliers Mini Excavator Drive Sprocket Wheel China E120b Excavator Parts Sprocket

Product Description

OLA Mechanical Machinery Suppliers Mini Excavator Drive Sprocket Wheel China E120B Excavator Parts Sprocket

Product Description

Excavator Drive Sprocket

The Excavator Drive Sprocket, Also Known As The Excavator Sprocket Wheel, is another crucial component of an excavator’s Undercarriage System. It is connected to the final drive motor and engages with the excavator’s Track Chain.

The Drive Sprocket Is Typically Located At The Rear Of The Excavator And Is Responsible For Driving The Tracks And Propelling The Machine CZPT Or Backward. The Sprocket Is Comprised Of Teeth That Mesh With The Links Of The Track Chain, Enabling The Excavation Machine To Move.

Like Other Components Of The Undercarriage System, The Drive Sprocket Is Made From Durable Materials, Such As Steel. It Undergoes Heat Treatment Processes To Enhance Its Strength And Wear Resistance, As It Experiences Substantial Forces And Friction During Operation.

Structure Of Products

-The Drive Sprocket Is Typically Located At The Rear Of The Excavator And Is Connected To The Final Drive Motor.

-It Is A Large, Toothed Wheel That Meshes With The Track Links To Provide Traction And Movement.

-The Sprocket Is Usually Made Of High-Strength Steel To Withstand The Heavy Loads And Impact Forces Generated During Operation.

-The Tooth Design May Vary Depending On The Manufacturer, But It Is Typically A Single-Tooth Or Double-Tooth Configuration.

Detailed Photos

Product Parameters

Product Name Sprocket
Keywords Excavator Drive Sprocket
Material 40MN/35MnB
Finish Smooth
Colors As per to customer’s request
Technique Forging &casting
Weight 10-50kg
Surface Hardness HRC50-56,Deepth:4mm-10mm
Size standard or Customized
Process Forging Casting
Test Report Provided
Shape Round
Quality 100% Tested
OEM OEM Services Provided
MOQ 1 Piece

                           Parame
Code
A M P H W N-φ Z
DH55/R60 250 465 135 42 18 12-φ17 21
DH130 325 592 171 56 18.7 15-φ17.5 21
DH170 362 645 171 64 21.6 21-φ18 23
DH370 490 740 216 90 33 28-φ21 21
DH400 490 740 216 90 33 28-φ21 21
DH220/R225-7 402 660 190 68 18 30-φ16 21
DH280 450 760 203 74 25.5 16-571.5 23
DH450 325 590 171 52 22.4 15-φ17 21
E55 230 424 135 49 14.5 9-φ15.5 19
E70B 265 555 135 38 18 12-φ16 25
E70B-3 288 555 135 38 17 12-φ16 25
E120B 346 600 171.5 52 21 15-φ18 21
E200B 415 660 190 63 22.3 14-φ21.5 21
E305.5B 230 428 135 49 16 12-φ15 19
E320 456 660 190 65 23 16-φ21 21
E325 450 697 203 75 27 18-φ21.5 21
E330 515 813 216 80.5 28 16-φ21.5 23
E345 577 810 216 86 23 20-φ25 23
E450 561 885 216 86 26 24-φ27 25
E300B 450 770 190 70 25 16-φ21 25

 

                          Paramd
Code
A M P H W N-l Z
EC140 366 591 171.5 58 16 22-φ17 21
EC150 320 650 171.1 56 15 20-φ18 23
EC240 410 658 190 62 21.4 18-φ19 21
EC290 450 704 203 84 28 16-φ21 21
EC360 450 760 216 90 27 24-φ21 21
EC460/R450 461 B19 216 87 26 24-φ21 23
EX30-5 204 350 101 28 14.6 9-φ13 21
EX35 210 350 101 27 15 9-φ13 21
EX55 230 420 135 42 12.3 9-φ15 19
EX60-1 290 535 154 50 18 12-φ17 21
EX70 330 535 154 40 19.6 12-φ18 23
EX90 330 535 154 40 19.6 12-φ18 21
EX100 356 590 171 58 21.7 16-φ17 21
EX136 370 591 171 56 16 16-φ18 21
EX150-1/EX150 365 643 171 65 17 22-φ17 23
EX200-1 415 657 175 63 21.6 16-φ22 23
EX200-2 430 658 190 70 20.8 16-φ21.5 21
EX200-3 419 658 190 70 24 16-φ22 21
EX300-3 465 704 203 90 28 20-φ22 21
UH04-7 268 600 171.5 64 16 16-φ18 21
UH045 284 600 171 67 19 16-φ19 21
UH571-5 245 535 154 50 14 121-φ18 21
UH571-7 245 534 54 49 16 12-φ17 21
UH063 330 655 171 66 18.5 16-φ17.5 23
UH081 276 665 175 65 22.3 14-φ21.5 21
UH083 370 660 175 70 23 16-φ22 23
HD307 265 514 135 38 18 12-φ17.5 23
HD550-3 362 650 171 64 22.7 15-017.5 23
HD550-7 362 650 171 64 22.7 21-φ18 23
HD700-2 362 590 171 60 21 15-φ17.5 21
HD1880 556 B21 216 90 28 24-φ25 23
HD800 402 660 190 62 21.3 22-φ18 21
MS120-2 380 645 171 5B 20 16-φ18 23
MS110-B/MS110 240 506 135 38 18.5 16-φ13 23
TB175 250 530 154 36 16 12-φ16 21
PC20 190 380 101 27 15 9-φ13 23
PC30 190 350 101 27 14.5 9-φ13 21
PC30-7 210 385 101 25 15.6 9-φ13 23
PC30-10 210 385 101 27 14 12-φ13 23
PC40-7 210 420 135 36 16 9-φ13 21
PC60-6/7 265 525 154 36 15 12-φ16 21
PC75 265 480 154 36 15 12-φ15.5 19
PC90 324 538 175 40 16.2 15-φ19 19
PC120-6 400 600 175 42 14.4 15-φ18 21
PC150 424 660 190 60 21.6 15-φ18 21
PC200-1 346 660 190 68 17 6-φ60 21
PC200-5 473 660 190 73 18 20-φ19 21
PC200-5 473 660 175 68 19 20-φ19 23

Our Advantages

-Quenching Process

1.Improve Surface Hardness:
The Quenching Process Can Greatly Increase The Hardness Of The Drive Sprocket Surface, Thereby Increasing The Wear Resistance And Fatigue Resistance Of The Drive Sprocket And Extending The Service Life Of The Drive Sprocket.

2. Enhanced Wear Resistance:
After Quenching, A Dense Wear-Resistant Layer Is Formed On The Surface Of The Drive Sprocket, Which Can Effectively Resist Friction And Wear, Improve The Wear Resistance Of The Drive Sprocket, And Have Better Durability Under Harsh Working Conditions.

3. Improve Strength And Toughness:
The Rapid Cooling During The Quenching Process Refines The Grains In The Drive Sprocket, Thereby Improving Its Strength And Toughness, Increasing The Load-Bearing Capacity And Fracture Resistance, Making The Drive Sprocket More Reliable And Stable Under High Loads And Harsh Working Conditions.

-Enhanced Traction:
The Drive Sprockets Play A Vital Role In Providing The Necessary Traction For An Excavator To Move Smoothly On Various Terrains. 

-Improved Durability
Drive Sprockets Are Designed To Withstand Heavy Loads, Constant Friction, And CZPT Environments. They Are Usually Made From High-Quality, Durable Materials Like Hardened Steel, Which Enhances Their Resistance To Wear And Tear. 

-Efficient Power Transmission:
The Drive Sprockets Transfer Power From The Final Drive Motor To The Track Chain, Efficiently Converting Rotational Force Into Linear Movement. This Ensures That The Engine Power Is Effectively Utilized To Propel The Excavator, Improving Overall Efficiency And Productivity.

 

Related Products

Company Profile

FAQ

1. How Do You Ensure The Parts You Send Are High Quality?
Once We Receive The Raw Material We Will Do The Chemical Composition Testing And In Production, Our QC Will Do The Random Inspection Of Every Lot of The Dimensions, Appearance, Mechanical Properties Hardness, Impact Value, Etc. To Make Sure Every Part Is Qualified.

2. What Is The Payment Term?
Usually 50% Deposit And The Balance Before The Shipment Or Against The BL Copy. TT, LC Is Welcome.

3. If We Want To Do Our Logo, Is That Acceptable?
Yes, OEM &ODM Are Welcome.

4. What’s The Lead Time?
For The Normal Order, It Usually Takes 15-30 Days After Receiving The Deposit As Agreed.

5. What Kind Of Package Do You Offer?
Normally We Use The Export Standard Pallets, If You Have Any Special Requirements, We Can Discuss Them.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: After Sale
Warranty: 1 Year
Type: Bucket Teeth
Application: Paving Machinery
Certification: CE, ISO9001: 2000
Condition: New
Samples:
US$ 60/Piece
1 Piece(Min.Order)

|
Request Sample

drive sprocket

Can drive sprockets be used in underwater or harsh environmental conditions?

Whether drive sprockets can be used in underwater or harsh environmental conditions depends on the material and design of the sprocket, as well as the specific conditions of the application. Here are some considerations:

  • 1. Stainless Steel Sprockets: Stainless steel sprockets are highly resistant to corrosion and can be used in various harsh environments, including underwater applications. They are commonly used in marine equipment and other outdoor applications exposed to moisture and humidity.
  • 2. Coated or Plated Sprockets: Some sprockets are coated or plated with materials like zinc, nickel, or chrome to enhance their corrosion resistance. These sprockets can also be used in mildly harsh environments but may have limitations in prolonged underwater use.
  • 3. Sealed or Shielded Bearings: In some applications, especially those exposed to dust, dirt, or debris, sprockets with sealed or shielded bearings are used to protect the internal components from contamination.
  • 4. Specialized Materials: In extremely harsh environments, such as underwater mining or deep-sea operations, specialized materials with high corrosion resistance and durability may be required.

It’s essential to consider the specific conditions of your application when selecting drive sprockets for use in underwater or harsh environments. Regular maintenance and proper lubrication are also critical to extending the lifespan of sprockets in such conditions. Additionally, consulting with experts or manufacturers with experience in supplying sprockets for similar environments can help you make the right choice for your application.

drive sprocket

What are the best practices for storing spare drive sprockets when not in use?

Proper storage of spare drive sprockets is essential to maintain their performance and longevity. When not in use, follow these best practices for storing spare drive sprockets:

  • Clean the Sprockets: Before storing, make sure the sprockets are clean and free from dirt, debris, or any contaminants. Use a brush or cloth to remove any buildup on the sprocket’s teeth and surfaces.
  • Inspect for Damage: Check the sprockets for any signs of wear, damage, or deformation. If you notice any issues, address them before storage, or consider replacing the sprocket if necessary.
  • Keep in a Dry Environment: Store the sprockets in a dry and controlled environment to prevent rust or corrosion. Moisture can lead to deterioration of the sprockets over time.
  • Avoid Direct Sunlight: Keep the sprockets away from direct sunlight or sources of heat. Prolonged exposure to sunlight can degrade certain materials and affect the sprockets’ performance.
  • Use Original Packaging: If possible, store the sprockets in their original packaging. The original packaging provides protection and prevents them from coming into contact with other objects that may cause damage.
  • Keep Away from Chemicals: Avoid storing the sprockets near any chemicals or substances that could potentially cause damage or reactions with the material of the sprockets.
  • Organize and Label: If you have multiple spare sprockets, organize and label them accordingly for easy identification and retrieval.
  • Elevate from the Ground: Store the sprockets on pallets, shelves, or racks to keep them off the ground and away from potential hazards or moisture.
  • Rotate Stock: If you have a stock of spare sprockets, rotate them periodically to ensure that older sprockets are used first, preventing any sprockets from sitting in storage for too long.

By following these best practices, you can ensure that your spare drive sprockets remain in good condition and are ready for use whenever they are needed.

drive sprocket

How do drive sprockets work in conjunction with chains and other components?

In a mechanical power transmission system, drive sprockets play a vital role in working with chains and other components to transfer rotational motion and power from one shaft to another. The interaction between drive sprockets, chains, and additional components is essential for the efficient functioning of the system.

1. Chain Engagement: Drive sprockets are designed with teeth that correspond to the pitch of the chain they are intended to work with. When power is applied to the drive sprocket, it rotates, causing the teeth to engage with the links of the chain. This engagement creates a positive drive system, where the sprocket and chain move in sync, transmitting motion and power along the chain’s length.

2. Chain Wrap: The chain wraps partially around the circumference of the drive sprocket. The degree of wrap, known as the chain wrap angle, influences the efficiency of power transmission and the sprocket’s ability to maintain a secure grip on the chain. A larger chain wrap angle generally results in better power transmission and reduced likelihood of chain slippage.

3. Chain Tension: To maintain proper chain engagement, tension must be applied to the chain. Drive sprockets are often mounted on an adjustable shaft or a tensioner to ensure the chain remains tight. Proper chain tension prevents excess slack, reduces vibration, and minimizes the risk of the chain disengaging from the sprocket.

4. Interaction with Driven Sprockets: In many systems, the drive sprocket is connected to a driven sprocket through a continuous loop of chain. When the drive sprocket rotates, it pulls the chain along, causing the driven sprocket to rotate as well. This allows the transmission of motion and power from the input shaft (connected to the drive sprocket) to the output shaft (connected to the driven sprocket).

5. Gear Ratio: The combination of the number of teeth on the drive sprocket and the driven sprocket determines the gear ratio of the system. The gear ratio affects the speed and torque output of the mechanical system. By altering the size of the sprockets, the gear ratio can be modified to suit specific operational requirements.

6. Lubrication: Proper lubrication of the chain-sprocket interface is crucial for reducing friction, wear, and noise. Lubricants ensure smooth movement of the chain on the sprocket, thereby enhancing the overall efficiency and lifespan of the system.

Overall, drive sprockets, in conjunction with chains and other components, facilitate the efficient and reliable transfer of power in mechanical systems. Their precise design, engagement with the chain, and interaction with driven sprockets ensure smooth and controlled motion, making them essential components in a wide range of applications.

China supplier Ola Mechanical Machinery Suppliers Mini Excavator Drive Sprocket Wheel China E120b Excavator Parts Sprocket  China supplier Ola Mechanical Machinery Suppliers Mini Excavator Drive Sprocket Wheel China E120b Excavator Parts Sprocket
editor by CX 2024-03-13